79.4k views
3 votes
Please help, I need input on if I did this correctly and you just substitute.

I have the function h(t) = -16t^2 + 15t + 6.5
t equals 15/32.

If you substitute 15/32 for t, what do you get?

Any help is appreciated, thank you very much!

1 Answer

1 vote

The value of h(t) when
t=(15)/(32) is 10.02.

Solution:

Given function
h(t)=-16t^2+15t+6.5

To find the value of h(t) when
t=(15)/(32):


h(t)=-16t^2+15t+6.5

Substitute
t=(15)/(32) in the given function.


$h\left((15)/(32) \right)=-16\left((15)/(32) \right)^2+15\left((15)/(32) \right)+6.5


$=-16\left((225)/(1024) \right)+15\left((15)/(32) \right)+6.5

Now multiply the common terms into inside the bracket.


$=-\left((3600)/(1024) \right)+\left((225)/(32) \right)+6.5

Now, in the first term, the numerator and denominator both have common factor 16. So reduce the first term into the lowest term.


$=-\left((225)/(64) \right)+\left((225)/(32) \right)+6.5

To make the denominator same, take LCM of the denominators.

LCM of 64 and 32 = 64


$=-\left((225)/(64) \right)+\left((225*2)/(32*2) \right)+6.5*(64)/(64)


$=-(225)/(64) +(450)/(64)+(416)/(64)


$=(-225+450+416)/(64)


$=(641)/(64)

= 10.02


$h\left((15)/(32) \right)=10.02

Hence the value of h(t) when
t=(15)/(32) is 10.02.

User Fred Wu
by
5.3k points