77.4k views
2 votes
The Maclaurin series expansion for the arctangent of x is defined for |x| ≤ 1 as arctan x = ∑ n=0 [infinity] (−1)n ______ 2n +1 x 2n+1 (a) Write out the first 4 terms (n = 0,...,3). (b) Starting with the simplest version, arctan x = x, add terms one at a time to estimate arctan(π/6). After each new term is added, comput

1 Answer

2 votes

Answer:

a)
n =0,  ((-1)^0)/(2*0+1) x^(2*0+1)= x


n =1,  ((-1)^1)/(2*1+1) x^(2*1+1)= -(x^3)/(3)


n =2,  ((-1)^2)/(2*2+1) x^(2*2+1)= (x^5)/(5)


n =3,  ((-1)^3)/(2*3+1) x^(2*3+1)= -(x^7)/(7)

b) n=0


arctan(\pi/6) \approx \pi/6 = 0.523599

The real value for the expression is
arctan (\pi/6) = 0.482348

And if we replace into the formula of relative error we got:


\% error= (|0.523599 -0.482348|)/(0.482348) * 100= 8.55\%

n =1


arctan(\pi/6) \approx \pi/6 -((pi/6)^3)/(3) = 0.47576


\% error= (|0.47576 -0.482348|)/(0.482348) * 100= 1.37\%

n =2


arctan(\pi/6) \approx \pi/6 -((pi/6)^3)/(3) +((pi/6)^5)/(5) = 0.483631


\% error= (|0.483631 -0.482348|)/(0.482348) * 100= 0.27\%

n =3


arctan(\pi/6) \approx \pi/6 -((pi/6)^3)/(3) +((pi/6)^5)/(5)-((pi/6)^7)/(7) = 0.48209


\% error= (|0.48209 -0.482348|)/(0.482348) * 100= 0.05\%


\arctan (\pi/6) = 0.48

Explanation:

Part a

the general term is given by:


a_n = ((-1)^n)/(2n+1) x^(2n+1)

And if we replace n=0,1,2,3 we have the first four terms like this:


n =0,  ((-1)^0)/(2*0+1) x^(2*0+1)= x


n =1,  ((-1)^1)/(2*1+1) x^(2*1+1)= -(x^3)/(3)


n =2,  ((-1)^2)/(2*2+1) x^(2*2+1)= (x^5)/(5)


n =3,  ((-1)^3)/(2*3+1) x^(2*3+1)= -(x^7)/(7)

Part b

If we use the approximation
arctan x \approx x we got:

n=0


arctan(\pi/6) \approx \pi/6 = 0.523599

The real value for the expression is
arctan (\pi/6) = 0.482348

And if we replace into the formula of relative error we got:


\% error= (|0.523599 -0.482348|)/(0.482348) * 100= 8.55\%

If we add the terms for each value of n and we calculate the error we see this:

n =1


arctan(\pi/6) \approx \pi/6 -((pi/6)^3)/(3) = 0.47576


\% error= (|0.47576 -0.482348|)/(0.482348) * 100= 1.37\%

n =2


arctan(\pi/6) \approx \pi/6 -((pi/6)^3)/(3) +((pi/6)^5)/(5) = 0.483631


\% error= (|0.483631 -0.482348|)/(0.482348) * 100= 0.27\%

n =3


arctan(\pi/6) \approx \pi/6 -((pi/6)^3)/(3) +((pi/6)^5)/(5)-((pi/6)^7)/(7) = 0.48209


\% error= (|0.48209 -0.482348|)/(0.482348) * 100= 0.05\%

And thn we can conclude that the approximation is given by:


\arctan (\pi/6) = 0.48

Rounded to 2 significant figures

User Maxsilver
by
5.1k points