Answer:
a) Power = Av⁴
b) Energy = Av⁴/2 or (A²v⁶)/2m
Step-by-step explanation:
Given Y = Av³
A = a constant, v = Velocity, Y = system variable.
a) If Y = Force, F, Find Power in the element.
Power is the dot product of Force and velocity and it's a scalar quantity.
i.e. P = F.v = F.v (cos θ) where θ is the angle between the force and velocity vector.
But in this case, average power is simply given by Fv.
P(avg) = Fv = Yv = (Av³) × v = Av⁴
b) If Y = linear momentum, p, Find the energy stored in the element.
Energy is related to linear momentum by the relationship between kinetic energy and linear momentum.
p = mv and E = mv²/2 = (mv)(v)/2, so,
E = pv/2
For this question, p = Y = Av³
E = Yv/2 = (Av³)v/2 = Av⁴/2
Kinetic energy is often related to momentum through this expression too,
p = mv; p² = m²v²
E = mv²/2; E = (mv²/2) × (m/m) = m²v²/2m = p²/2m
Therefore, E = Y²/2m = (Av³)²/2m = (A²v⁶)/2m
Hope this helps!