132k views
4 votes
A 0.10-kilogram ball dropped vertically from a height of 1.0 meter above the floor bounces back to a height of 0.80 meter. The mechanical energy lost by the ball as it bounces is approximately

A) 0.20 J
B) 0.080 J
C) 0.78 J
D) 0.30 J

User Beygi
by
3.4k points

2 Answers

1 vote

0.2 J

mgh (before) = (0.1)(9.8)(1) = 0.98

mgh (after) = (0.1)(9.8)(0.8) = 0.784

0.98-0.784=0.196

0.196 is approximately 0.2.

User Hafiz Temuri
by
3.7k points
0 votes

Answer:

A) 0.20Joules

Step-by-step explanation:

The type mechanical energy acting on the body is potential energy since the body is covering a particular height.

Potential Energy = mass×acceleration due to gravity × height

Mass of the body = 0.1kg

acceleration due to gravity = 10m/s²

h is the height of the object when dropping = 1.0meters

Substituting this values in the formula to get the energy of the body on dropping, we have;

PE = 0.1×10×1.0

PE = 1.0Joules

On bouncing back to height of 0.8m, the potential energy becomes

PE = 0.1×10×0.8

PE = 0.8Joules

The mechanical energy lost by the ball as it bounces will approximately be the difference in its potential energy when dropping and when it bounces back i.e 1.0Joules - 0.8Joules = 0.20Joules

User Nmford
by
4.0k points