Answer:
Vab =17.5kV
A = 16.9 cm2
C = 4.27pF
Step-by-step explanation:
a) Find the voltage difference:
Vab = Ed
E Electric field
d distance between plates
Vab potential difference
d = 3.5mm
= 3.5 * 10^(-3) m
Q = 75.0nC
= 75 * 10^(-9)
E = 5.00 * 10^6 V/m
Vab = (5.00 * 10^6) * (3.5 * 10^(-3))
= 17.5 * 10^3 V
=17.5kV
b. What is the area of the plate?
The relation between the electric field and area is given as:
E = Q/(ϵ0 * A)
A = Q/(ϵ0 *E)
Where ϵ0 is the electric constant and equals 8.854 × 10^ (-12) C2/N•m2
A = 75 * 10^ (-9) / (8.854 × 10^ (-12) (5.00 * 10^6)
= 1.69 X 10^ (-3) m2
= 16.9 cm2
c. Find the capacitance
The equation relating capacitance, area of plate and plate distance is given by:
C = ϵ0 A/d
plug in the values of d, ϵ0 and A above to get the capacitance:
C = (8.854 × 10^ (-12) * 1.69 X 10^ (-3) / 3.5 * 10^ (-3)
= 4.27 * 10^ (-12) F
= 4.27pF