234k views
4 votes
Identify the zeros of the function f(x) =2x^2 − 2x + 13 using the Quadratic Formula. SHOW WORK PLEASE!! I NEED HELP!!

User Kxr
by
4.2k points

1 Answer

2 votes

Answer:


x=\frac{1+5i} {2} and
x=\frac{1-5i} {2}

Explanation:

we know that

The formula to solve a quadratic equation of the form


ax^(2) +bx+c=0

is equal to


x=\frac{-b\pm\sqrt{b^(2)-4ac}} {2a}

in this problem we have


f(x)=2x^(2) -2x+13

Equate the function to zero


2x^(2) -2x+13=0

so


a=2\\b=-2\\c=13

substitute in the formula


x=\frac{-(-2)\pm\sqrt{-2^(2)-4(2)(13)}} {2(2)}


x=\frac{2\pm√(-100)} {4}

Remember that


i=√(-1)

so


x=\frac{2\pm10i} {4}

Simplify


x=\frac{1\pm5i} {2}

therefore


x=\frac{1+5i} {2} and
x=\frac{1-5i} {2}

User EscapeArtist
by
4.8k points