Answer:
Lenght = 20m
Width = 30m
Explanation:
Perimeter of a rectangular enclosure = 2(L+W)
Adding a length of the fence parallel to one side of the sudden to split the closure, the total is 2(L+W) + L = 120
Area of a rectangular closure = L*W
To find the dimension that would maximize the area solve for L and W.
2(L+W) + L = 120
2L + 2W + L = 120
3L + 2W = 120
2W = 120 - 3L
W = (120 - 3L)/2
Put the value of W into Area formula
A = L*W
A = L *(120 - 3L) /2
= L(60 - 1.5L)
= 60L - 1.5L^2
= -1.5L^2 + 60L
This is a quadratic equation. Compare to ax^2 + bx + c
L = -b/2a
a = -1.5, b= 60, c= 0
L = -60/2(-1.5)
= -60/-3
= 20m
Put L = 20 into the value of W
W = (120 - 3L) /2
W= (120 - 3*20) / 2
= (120 - 60)/2
= 60 / 2
= 30m
The dimensions are 20m by 30m