228k views
1 vote
Jun has 120 meters of fencing to make a rectangular enclosure. She also wants to use some fencing to split the enclosure into two parts with a fence parallel to two of the sides. What dimensions should the enclosure have to have the maximum possible area?

1 Answer

4 votes

Answer:

Lenght = 20m

Width = 30m

Explanation:

Perimeter of a rectangular enclosure = 2(L+W)

Adding a length of the fence parallel to one side of the sudden to split the closure, the total is 2(L+W) + L = 120

Area of a rectangular closure = L*W

To find the dimension that would maximize the area solve for L and W.

2(L+W) + L = 120

2L + 2W + L = 120

3L + 2W = 120

2W = 120 - 3L

W = (120 - 3L)/2

Put the value of W into Area formula

A = L*W

A = L *(120 - 3L) /2

= L(60 - 1.5L)

= 60L - 1.5L^2

= -1.5L^2 + 60L

This is a quadratic equation. Compare to ax^2 + bx + c

L = -b/2a

a = -1.5, b= 60, c= 0

L = -60/2(-1.5)

= -60/-3

= 20m

Put L = 20 into the value of W

W = (120 - 3L) /2

W= (120 - 3*20) / 2

= (120 - 60)/2

= 60 / 2

= 30m

The dimensions are 20m by 30m

User Mannu
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories