118k views
8 votes
I have already done Number one but I need help with 2. Please help when you find time to!

I have already done Number one but I need help with 2. Please help when you find time-example-1

2 Answers

0 votes

Concept :-

We can solve these questions by using the formulas of area of triangle and rectangle, which will make our work easier. So, we know that,


\blue{ \underline{ \boxed{ \begin{array}{cc} \sf1. ~Area_(Triangle) = \frac{1} {2} * b * h \qquad \: \: \: \: \: \: \: \\ \\ \\ \sf2. \: Area_(Rectangle) = Length * Breadth \end{array}}}} \\ \\

Using these formulas and figuring out the number of triangles and rectangles in each shape, we will solve this question.

Solution :-

1. In this square pyramid, if we closely observe, we will get to know that there are 1 rectangle and 4 triangular faces. Thus,


\sf \hookrightarrow Area=6 * 6 + 4( (1)/(2) * 6 * 14) \\ \\ \\ \sf \hookrightarrow Area=36 + 168 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \hookrightarrow Area= {204 \: yd}^(2) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\

2. Now, here, we can use the formula of total surface area for cuboid, i.e.

TSA = 2( lb + bh + hl )


\sf \hookrightarrow Area=2(10 * 6 + 6 * 3 + 10 * 3) \\ \\ \\ \sf \hookrightarrow Area=2(60 + 18 + 30) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \hookrightarrow Area=2 * 108 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \hookrightarrow Area= {216 \: mm}^(2) \: \: \qquad \qquad \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\

Extra Credit Question.

Here, we can find out the total surface area by finding,

Base area i.e. length x breadth ( B.A. )

Side area i.e. length x breadth ( S.A. )

triangular area = 1/2 x b x h ( T.A. )

Now,

TSA = BA + 2 x S.A. + 2 x T.A.


\sf \hookrightarrow Area=(10 * 3) + 2(10 * 2.5) + 2((1)/(2) * 3 * 2) \\ \\ \\ \sf \hookrightarrow Area= 30 + 2 * 25 + 2 * 3 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \hookrightarrow Area=30 + 50 + 6 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \sf \hookrightarrow Area= {86 \: mm}^(2) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\

User Minas Mina
by
8.7k points
11 votes

Answer:

Explanation:

Formulae

Area of a triangle = 1/2 x base x height

Area of a rectangle = width x length

Question 1

Surface area of square based pyramid = area of base + 4 × area of triangle

⇒ SA = (6 × 6) + 4(1/2 × 6 × 14)

= 36 + 168

= 204 yd²

Question 2

Surface area of a cuboid = 2 × base area + 2 × end area + 2 × side area

⇒ SA = 2(10 × 6) + 2(6 × 3) + 2(10 × 3)

= 120 + 36 + 60

= 216 mm²

Extra credit question

Surface area of a triangular based prism = base area + 2 × triangle area + 2 × side areas

base area = 3 × 10 = 30 mm²

triangle area = 1/2 × 3 × 2 = 3 mm²

side area = 10 × 2.5 = 25 mm²

⇒ total SA = 30 + (2 × 3) + (2 × 25)

= 30 + 6 + 50

= 86 mm²

User Kenda
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories