Answer:
223 degree
Step-by-step explanation:
We are given that
Magnitude of resultant vector= 8 units
Resultant vector makes an angle with positive -x in counter clockwise direction
![\theta=43^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/drvzmgpw5sl7v13pzsk5zkc09tc2m1ednm.png)
We have to find the magnitude and angle of the equilibrium vector.
We know that equilibrium vector is equal in magnitude and in opposite direction to the given vector.
Therefore, magnitude of equilibrium vector=8 units
x-component of a vector=
![v_x=vcos\theta](https://img.qammunity.org/2021/formulas/physics/middle-school/2oipiyam9v41l7xy1z00mprwunk4ib0mtn.png)
Where v=Magnitude of vector
Using the formula
x-component of resultant vector=
![v_x=8cos43=5.85](https://img.qammunity.org/2021/formulas/physics/college/t1fhhz4r5ee946r1wpbopbpwepwwbhbhp4.png)
y-component of resultant vector=
![v_y=vsin\theta=8sin43=5.46](https://img.qammunity.org/2021/formulas/physics/college/u63qj87mb4spcclfnrldsxlq73h5gnyw9j.png)
x-component of equilibrium vector=
![v_x=-5.85](https://img.qammunity.org/2021/formulas/physics/college/zbul7urn2wrr2hovjiuazwipit0o1hxjv0.png)
y-component of equilibrium vector=
![-v_y=-5.46](https://img.qammunity.org/2021/formulas/physics/college/4o0jh6hxd5u9947zfcnrr4x98ravpxyyow.png)
Because equilibrium vector lies in III quadrant
![\theta=tan^(-1)((v_x)/(v_y))=tan^(-1)((-5.46)/(-5.85))=43^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/zpz03c8grzkgzv66abpwj0eba9ream2el1.png)
The angle
lies in III quadrant
In III quadrant ,angle =
![\theta'+180^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/q2xereeck5aqjw4syo5lazcfxwjegagd12.png)
Angle of equilibrium vector measured from positive x in counter clock wise direction=180+43=223 degree