Answer:
a) t = √(2*h/g)
b) v₀ = 67*√(g/(2*h))
c) ∅ = tan⁻¹(2*h/67)
Step-by-step explanation:
Suppose that the height of the building is known (h), then we have
a) y = h = g*t²/2
then the time of flight is
t = √(2*h/g)
b) The initial speed (v₀) can be obtained as follows
x = v₀*t ⇒ v₀ = x / t
where
x = xmax = 67 m and t = √(2*h/g)
So, we have
v₀ = 67 / √(2*h/g) = 67*√(g/(2*h))
c) In order to get the speed and the angle with respect to the horizontal of the velocity vector at impact, we obtain vx and vy as follows
vx = v₀ = 67*√(g/(2*h))
and
vy = gt = g*√(2*h/g) ⇒ vy = √(2*h*g)
then we apply
v = √(vx² + vy²) = √((67*√(g/(2*h)))² + (√(2*h*g))²)
⇒ v = √(g*(4489 + 4*h²)/(2*h))
The angle is obtained as follows
tan ∅ = vy / vx ⇒ tan ∅ = √(2*h*g) / 67*√(g/(2*h))
⇒ tan ∅ = 2*h / 67 ⇒ ∅ = tan⁻¹(2*h/67)