Answer:
The empirical formula is =
Step-by-step explanation:
Mass of water obtained = 9.29 g
Molar mass of water = 18 g/mol
Moles of
= 9.29 g /18 g/mol = 0.51611 moles
2 moles of hydrogen atoms are present in 1 mole of water. So,
Moles of H = 2 x 0.51611 = 1.03222 moles
Molar mass of H atom = 1.008 g/mol
Mass of H in molecule = 1.03222 x 1.008 = 1.0407 g
Mass of carbon dioxide obtained = 22.7 g
Molar mass of carbon dioxide = 44.01 g/mol
Moles of
= 22.7 g /44.01 g/mol = 0.5158 moles
1 mole of carbon atoms are present in 1 mole of carbon dioxide. So,
Moles of C = 0.5158 moles
Molar mass of C atom = 12.0107 g/mol
Mass of C in molecule = 0.5158 x 12.0107 = 6.1950 g
Given that the compound only contains hydrogen, oxygen and carbon. So,
Mass of O in the sample = Total mass - Mass of C - Mass of H
Mass of the sample = 9.30 g
Mass of O in sample = 9.30 - 6.1950 - 1.0407 = 2.0643 g
Molar mass of O = 15.999 g/mol
Moles of O = 2.0643 / 15.999 = 0.12903 moles
Taking the simplest ratio for H, O and C as:
1.03222 : 0.12903 : 0.5158
= 8 : 1 : 4
The empirical formula is =