368,934 views
4 votes
4 votes
Two bodies of specific heats S1 and S2 having the same heat capacities are combined to form a single composite body. What is the specific heat of the composite body?​

User Marine Galantin
by
2.8k points

1 Answer

6 votes
6 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

Heat capacity of body 1 :


\qquad \sf  \dashrightarrow \:m_1s_1

Heat capacity of body 2 :


\qquad \sf  \dashrightarrow \:m_2s_2

it's given that, the the head capacities of both the objects are equal. I.e


\qquad \sf  \dashrightarrow \:m_1s_1 = m_2s_2


\qquad \sf  \dashrightarrow \:m_1 = (m_2s_2)/(s_1)

Now, consider specific heat of composite body be s'

According to given relation :


\qquad \sf  \dashrightarrow \:(m_1 + m_2) s' = m_1s_1 + m_2s_2


\qquad \sf  \dashrightarrow \:s' = ( m_1s_1 + m_2s_2)/(m_1 + m_2)


\qquad \sf  \dashrightarrow \:s' = ( m_2s_2+ m_2s_2)/( (m_2s_2)/(s_1) + m_2 )

[ since,
m_2s_2 = m_1s_1 ]


\qquad \sf  \dashrightarrow \:s' = ( 2m_2s_2)/( m_2((s_2)/(s_1) + 1))


\qquad \sf  \dashrightarrow \:s' = \frac{ 2 \cancel{m_2}s_2}{ \cancel{m_2}((s_2)/(s_1) + 1)}


\qquad \sf  \dashrightarrow \:s' = ( 2 s_2)/( ((s_2 + s_1)/(s_1) ))


\qquad \sf  \dashrightarrow \: s' = (2s_1s_2)/(s_1 + s_2)

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

User Saulmaldonado
by
3.4k points