Answer:
16.5 g
Step-by-step explanation:
When a nonvolatile compound is dissolved in a pure solvent, the freezing point of the solvent is reduced, because the interaction solvent-solute requires more energy to be joined, and so, it freezes. This property is called cryoscopy, and the temperature change (ΔT) can be calculated by:
ΔT = Kc*W*i
Where Kc is the cryoscopy constant of the solute X, W is the molality of the solution, and i is the van't Hoff factor, which determines the percent of the solute that is dissolved. For organic molecules, such as alanine, i = 1.
The molality is the number of moles of the solute divided by the mass (in kg) of the solvent (1200 g = 1.2 kg). The molar mass of alanine is 89.09 g/mol, and the number of moles of it is the mass divided by the molar mass:
n = 45.8/89.09
n = 0.5141 mol
W = 0.5141/1.2 = 0.4284 mol/kg
So, Kc of X is:
4.10 = Kc*0.4284*1
Kc = 9.57 °C.kg/mol
So, if now sodium chloride is added to X, and the variation temperature is the same, and i = 1.82:
4.10 = 9.57*W*1.82
W = 0.2354 mol/kg
The number of moles of the solute is then:
W = n/1.2
0.2354 = n/1.2
n = 0.2825 mol
The molar mass of sodium chloride is 58.44 g/mol, thus the mass is the molar mass multiplied by the number of moles:
m = 58.44*0.2825
m = 16.5 g