177k views
22 votes
CAN SOMEONE PLEASE HELP

CAN SOMEONE PLEASE HELP-example-1
User Essence
by
4.2k points

2 Answers

7 votes


\qquad\qquad\huge\underline{{\sf Answer}}♨

Here's the solution ~


\qquad \sf  \dashrightarrow \: \frac{2 {}^(n) - 1}{ {4}^(n) - 1}


\qquad \sf  \dashrightarrow \: \frac{2 {}^(n) - 1}{ {( {2}^(2)) }^(n) - 1}


\qquad \sf  \dashrightarrow \: \frac{2 {}^(n) - 1}{ {( {2}^(n)) }^(2) - 1}

Now we will use this identity in denominator

[ a² - b² = (a + b)(a - b) ]


\qquad \sf  \dashrightarrow \: \frac{ \cancel{(2 {}^(n) - 1)}}{ {( {2}^(n) }^{} + 1) \cancel{( {2}^(n) - 1)}}


\qquad \sf  \dashrightarrow \: \frac{ 1}{ {( {2}^(n) }^{} + 1) }

User Bradvido
by
4.7k points
14 votes

Answer:


\sf (1)/(2^n+1)

Explanation:

Given expression:


\sf (2^n-1)/(4^n-1)

Rewrite
\sf 4^n:
\sf 4^n=(2^2)^n=2^(2n)=(2^n)^2

Rewrite 1: 1 = 1²


\sf \implies (2^n-1)/((2^n)^2-1^2)

Apply difference of two square formula to the denominator


\sf a^2-b^2=(a+b)(a-b)


\sf \implies (2^n-1)/((2^n+1)(2^n-1))

Cancel out the common factor
\sf 2^n-1 :


\sf \implies (1)/(2^n+1)

User David Barrows
by
4.5k points