Answer:
k ≤ 7
Explanation:
8 (6 - k) + 2k ≥ - 15 -(-3k)
Let's simplify this by solving each side.
First side:
8 (6 - k) + 2k ≥ - 15 -(-3k)
48 - 8k + 2k ≥ - 15 -(-3k)
48 - 6k ≥ - 15 -(-3k)
Second side:
48 - 6k ≥ - 15 -(-3k)
48 - 6k ≥ -15 + 3k
DONE SIMPLIFYING!
Now solve for "k" algebraically (transitions are in bold):
48 - 6k ≥ -15 + 3k
-6k ≥ -15 - 48 + 3k
-6k ≥ -63 + 3k
-6k - 3k ≥ -63
-9k ≥ -63
-k ≥ -63 ÷ 9
-k ≥ -7
k ≤ 7