Answer:
greatest speed=0.99c
least speed=0.283c
Step-by-step explanation:
To solve this problem, we have to go to frame of center of mass.
Total available energy fo π + and π - mesons will be difference in their rest energy:
![E_{0,K_(0) }-2E_(0,\pi ) =497Mev-2*139.5Mev\\](https://img.qammunity.org/2021/formulas/physics/college/hj896w9l4b7b9f87g4affrp2mr70vxumql.png)
=218 Mev
now we have to assume that both meson have same kinetic energy so each will have K=109 Mev from following equation for kinetic energy we have,
K=(γ-1)
![E_(0,\pi )](https://img.qammunity.org/2021/formulas/physics/college/lsdorqtkdl0u93r6lpuvc2f6rbeo4zi48g.png)
![K=E_(0,\pi)(\frac{1}{\sqrt{1-\beta ^(2) } } -1)\\\frac{1}\sqrt{1-\beta ^(2) }}=(K)/(E_(0,\pi))+1\\ {1-\beta ^(2)=(1)/(((K)/(E_(0,\pi))+1)^2)}\\\beta ^(2)=1-(1)/(((K)/(E_(0,\pi))+1)^2)}\\\beta = +-\sqrt{(1)/(((K)/(E_(0,\pi))+1)^2)}\\\\\\beta =+-\sqrt{1-(1)/(((109Mev)/(139.5Mev+1)^2))](https://img.qammunity.org/2021/formulas/physics/college/wyflrt601luq7ffbymjgailhk06odqqvge.png)
![u'=+-0.283c](https://img.qammunity.org/2021/formulas/physics/college/3gvlsc4fbhvqf230v5jdio0qq9o25fcci4.png)
note +-=±
To find speed least and greatest speed of meson we would use relativistic velocity addition equations:
![u=(u'+v)/(1+(v)/(c^(2) ) ) u'\\u_(max) =\frac{u'_(+) +v_{} }{1+(v)/(c^(2) ) } u'_(+) \\u_(max) =(0.828c +0.9c )/(1+(0.9c)/(c^(2) ) ) 0.828\\ u_(max) =0.99c\\u_(min) =\frac{u'_(-) +v_{} }{1+(v)/(c^(2) ) } u'_(-)\\u_(min) =(-0.828c +0.9c )/(1+(0.9c)/(c^(2) ) ) -0.828c\\u_(min) =0.283c](https://img.qammunity.org/2021/formulas/physics/college/eu4350cour9dxmu8rhwyaa10hbd9cmdqtr.png)