Answer:
Step-by-step explanation:
Given
Distance between Pluto and sun is 39.1 times more than the distance between earth and sun
According to Kepler's Law
![T^2=kR^3](https://img.qammunity.org/2021/formulas/physics/college/qcm3uhjm0vtrff94jyta2sfc9zz5n0keq7.png)
where k=constant
T=time period
R=Radius of orbit
Suppose
is the radius of orbit of earth and sun
so Distance between Pluto and sun is
![R_2=39.1\cdot R_1](https://img.qammunity.org/2021/formulas/physics/college/13a95pbdcw99t6nh763dulozarff6uoa1f.png)
and
is the time period corresponding to
and R_2[/tex]
![(T_1)^2=k(R_1)^3---1](https://img.qammunity.org/2021/formulas/physics/college/xf75jd16mbs2a9aa48l0waev8127tmem2b.png)
![(T_2)^2=k(R_2)^3---2](https://img.qammunity.org/2021/formulas/physics/college/flh5em2ilfzsek6d5dkdlgqflvykr3alht.png)
divide 1 and 2
![((365)/(T_2))^2=((R_1)/(39.1))^3](https://img.qammunity.org/2021/formulas/physics/college/izjqtq4lyf4yidy4ft69eaempucutlq0wx.png)
![T_2^2=365^2* 39.1^3](https://img.qammunity.org/2021/formulas/physics/college/rvs98tav23u7z9n6du0bptrhejgh2oagqf.png)