Answer:
a)
![0.58](https://img.qammunity.org/2021/formulas/biology/college/6j9ff60bn3b6qfcv6jy7mac4mew9qvq76a.png)
b)
![0.598](https://img.qammunity.org/2021/formulas/biology/college/8q0ndmas60lreo4laipeknmru9omeu2i32.png)
c)
![0](https://img.qammunity.org/2021/formulas/mathematics/high-school/ve20ffcn74fldj433977yel2e139n8olse.png)
Step-by-step explanation:
Given -
Total sample i.e n
![= 18](https://img.qammunity.org/2021/formulas/biology/college/iszdwvz1frystb1re36n7gopkobgpv6f7s.png)
Probability (p)
%
![= 0.03](https://img.qammunity.org/2021/formulas/biology/college/mxxq4jcwdjajslk2j1do5jj795fpov3bw6.png)
We will use binomial distribution theory for determining the probability of mutated sample
Let X be the number of mutated sample
a) No samples are mutated i.e
![X = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/470f9y45qkmskhdcm9s3l5c30dw7jj9qu2.png)
![P(X=0) = 0.03^0 * 0.97^(18)\\= 0.5779 = 0.58\\](https://img.qammunity.org/2021/formulas/biology/college/4k1qnumg9n4awvvebrjpw9gd95udfe0rbv.png)
![0.58](https://img.qammunity.org/2021/formulas/biology/college/6j9ff60bn3b6qfcv6jy7mac4mew9qvq76a.png)
b) At most one sample is mutated
![P(X=0) = 0.58 + 0.03^1 * 0.97^(17)\\= 0.598](https://img.qammunity.org/2021/formulas/biology/college/n4gfgyb3ken1o1cd0wrn429brq86j266ew.png)
c) More than half the samples are mutated.
![P(X = 10) + ........+ P(X = 18) = 0](https://img.qammunity.org/2021/formulas/biology/college/k6cdv3wei9p4a1d8c6f331j6bqethomfen.png)