Answer:
a.
![t=3.44s](https://img.qammunity.org/2021/formulas/physics/college/9ixl67s286qb4xyrtwxrbpnmpd83v4mcka.png)
b.
![x=12.45m](https://img.qammunity.org/2021/formulas/physics/college/uf6g9l3kqgv3d051wtf13wtx19t49wzl3t.png)
c.
![v_f=7.26(m)/(s)](https://img.qammunity.org/2021/formulas/physics/college/40kd2cnkn2fxvu7ilotero3q6adza8z30g.png)
Step-by-step explanation:
The bicyclist's friend moves with constant speed. So, we have:
![x=vt](https://img.qammunity.org/2021/formulas/physics/college/7xk2lg1l7ct4u0u9unq1zjhzesy9thqwg8.png)
Th bicyclist moves with constant acceleration and starts at rest (
). So, we have:
![x=v_0t+(at^2)/(2)\\x=(at^2)/(2)](https://img.qammunity.org/2021/formulas/physics/college/8vvbk09oula3o96vhdypnjgqrasiww8mdp.png)
a. When he catches his friend, both travels the same distance, thus:
![vt=(at^2)/(2)\\t=(2v)/(a)\\t=(2(3.63(m)/(s)))/(2.11(m)/(s^2))\\t=3.44s](https://img.qammunity.org/2021/formulas/physics/college/qzg94a800wzlgko3kfp952zbeyo3koh3dn.png)
b. We can use any of the distance equations, since both travels the same distance:
![x=vt\\x=3.63(m)/(s)(3.44s)\\x=12.45m](https://img.qammunity.org/2021/formulas/physics/college/pj1v6gsytklt397rc2h5xhanbheusvmly3.png)
c. The bicyclist final speed is:
![v_f=v_0+at\\v_f=at\\v_f=2.11(m)/(s^2)(3.44s)\\v_f=7.26(m)/(s)](https://img.qammunity.org/2021/formulas/physics/college/ornukp112v8n8td6pip6hpmybdscz9rq68.png)