68.1k views
5 votes
given examples of relations that have the following properties 1) relexive in some set A and symmetric but not transitive 2) equivalence relation in some set A 3) serial in some set A but not transitive

1 Answer

4 votes

Answer: 1) R = {(a, a), (а,b), (b, a), (b, b), (с, с), (b, с), (с, b)}.

It is clearly not transitive since (a, b) ∈ R and (b, c) ∈ R whilst (a, c) ¢ R. On the other hand, it is reflexive since (x, x) ∈ R for all cases of x: x = a, x = b, and x = c. Likewise, it is symmetric since (а, b) ∈ R and (b, а) ∈ R and (b, с) ∈ R and (c, b) ∈ R.

2) Let S=Z and define R = x and y have the same parity

i.e., x and y are either both even or both odd.

The parity relation is an equivalence relation.

a. For any x ∈ Z, x has the same parity as itself, so (x,x) ∈ R.

b. If (x,y) ∈ R, x and y have the same parity, so (y,x) ∈ R.

c. If (x.y) ∈ R, and (y,z) ∈ R, then x and z have the same parity as y, so they have the same parity as each other (if y is odd, both x and z are odd; if y is even, both x and z are even), thus (x,z)∈ R.

3) A reflexive relation is a serial relation but the converse is not true. So, for number 3, a relation that is reflexive but not transitive would also be serial but not transitive, so the relation provided in (1) satisfies this condition.

Explanation:

1) By definition,

a) R, a relation in a set X, is reflexive if and only if ∀x∈X, xRx ---> xRx.

That is, x works at the same place of x.

b) R is symmetric if and only if ∀x,y ∈ X, xRy ---> yRx

That is if x works at the same place y, then y works at the same place for x.

c) R is transitive if and only if ∀x,y,z ∈ X, xRy∧yRz ---> xRz

That is, if x works at the same place for y and y works at the same place for z, then x works at the same place for z.

2) An equivalence relation on a set S, is a relation on S which is reflexive, symmetric and transitive.

3) A reflexive relation is a serial relation but the converse is not true. So, for number 3, a relation that is reflexive but not transitive would also be serial and not transitive.

QED!

User Dude
by
7.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.