Answer:
(3, 0) and (5, 0)
Explanation:
we have
![y=x^(2)-8x+15](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nh4z8yq0e8re5b000p7wq145l6ax0m70fe.png)
we know that
The x-intercepts are the values of x when the value of y is equal to zero
so
For y=0
![x^(2)-8x+15=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m3ey03qe7gzzinwnkmb0qcpjfwl5lla7ej.png)
The formula to solve a quadratic equation of the form
is equal to
![x=\frac{-b\pm\sqrt{b^(2)-4ac}} {2a}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v8sisz55e1m1m05f4zv1qh4p0v753i9v3w.png)
in this problem we have
so
![a=1\\b=-8\\c=15](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kbbzk0pzeq8541vprk7bo2ksxnbg1tr0mz.png)
substitute in the formula
![x=\frac{-(-8)\pm\sqrt{-8^(2)-4(1)(15)}} {2(1)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3xax5jcvx4okf46kttqxnalnlzmwybcp6a.png)
![x=\frac{8\pm√(4)} {2}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7hg3jv7unnw42m61gv1tlhr8g6pfiwdwim.png)
![x=\frac{8\pm2} {2}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6bjz4darp66qx2d2c85qj0raeu0kunmios.png)
![x=\frac{8+2} {2}=5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qlhcdcntkg5361a505eodwu23fxiwldsf9.png)
![x=\frac{8-2} {2}=3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xsbm42m3u9hphywiflqgcuqt4cwrlamlpd.png)
so
x=3, x=5
therefore
The x-intercepts are (3,0) and (5,0)