39.0k views
2 votes
Can a goalkeeper at her/ his goal kick a soccer ball into the opponent’s goal without the ball touching the ground? The distance will be about 95 m. A goalkeeper can give the ball a speed of 30 m/s.

1 Answer

6 votes

Answer:

No she cannot.

Step-by-step explanation:

Let
v_h be the horizontal component of the ball velocity when it's kicked, assume no air resistance, this is a constant. Also let
v_v be the vertical component of the ball velocity, which is affected by gravity after it's kicked.

The time it takes to travel 95m accross the field is


t = 95 / v_h or
v_h = 95/t

t is also the time it takes to travel up, and the fall down to the ground, which ultimately stops the motion. So the vertical displacement after time t is 0


s = v_vt + gt^2/2= 0

where g = -9.8m/s2 in the opposite direction with
v_v


v_vt - 4.9t^2 = 0


v_vt = 4.9t^2


v_v = 4.9t

Since the total velocity that the goal keeper can give the ball is 30m/s


v = v_v^2 + v_h^2 = 30^2 = 900


(4.9t)^2 + \left((95)/(t))^2 = 900


24.01t^2 + (9025)/(t^2) = 900

Let substitute x =
t^2 > 0


24.01 x + (9025)/(x) = 900

We can multiply both sides by x


24.01 x^2 + 9025 = 900x


24.01x^2 - 900x + 9025 = 0


t= (-b \pm √(b^2 - 4ac))/(2a)


t= (900\pm √((-900)^2 - 4*(24.01)*(9025)))/(2*(24.01))

As
(-900)^2 - 4*24.01*9025 = -56761 < 0

The solution for this quadratic equation is indefinite

So it's not possible for the goal keeper to do this.

User Andrew Li
by
5.8k points