Answer:
It will take 0.72s for the football to hits the ground.
Explanation:
We have that the equaation for the height of the football is
![H(t) = -16t^(2) + 6t + 4](https://img.qammunity.org/2021/formulas/mathematics/college/2j01tkmjv7sqmkicpl3qd593h59jk0iq7f.png)
The football will hit the ground when
.
![H(t) = -16t^(2) + 6t + 4](https://img.qammunity.org/2021/formulas/mathematics/college/2j01tkmjv7sqmkicpl3qd593h59jk0iq7f.png)
![-16t^(2) + 6t + 4 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/1jf94eqdoba5nwmpxq02fgh6f68kjzcxt4.png)
Multiplying by -1
![16t^(2) - 6t - 4 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/33twab2cty2steamnhlnxysxj5go86g0bc.png)
To solve this equation, we need the bhaskara formula:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:
![x_(1) = (-b + √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/oyav4t50gxwlebnxow0jkg1h1wg0cug5v8.png)
![x_(2) = (-b - √(\bigtriangleup))/(2*a)](https://img.qammunity.org/2021/formulas/mathematics/college/ab43b5ab1q0isg535d913r7c1xw0asolw7.png)
![\bigtriangleup = b^(2) - 4a](https://img.qammunity.org/2021/formulas/mathematics/college/l1qwc9pfu2zyyuzeb74no01cts54q8uhec.png)
In this problem, we have that:
![16t^(2) - 6t - 4 = 0](https://img.qammunity.org/2021/formulas/mathematics/college/33twab2cty2steamnhlnxysxj5go86g0bc.png)
So
![a = 16, b = -6, c = -4](https://img.qammunity.org/2021/formulas/mathematics/college/hx0ib9sln1qyv4q09h0nvgtsji0ob76upm.png)
![\bigtriangleup = (-6)^(2) - 4*16*(-4) = 292](https://img.qammunity.org/2021/formulas/mathematics/college/5fpiye2mms00cvnf3m325rc4h5pb6ryqib.png)
![t_(1) = (-(-6) + √(292))/(2*16) = 0.72](https://img.qammunity.org/2021/formulas/mathematics/college/7zrowr5i0irlwx66oihvhmg5e8dj72fwfz.png)
![t_(2) = (-(-6) - √(292))/(2*16) = -0.35](https://img.qammunity.org/2021/formulas/mathematics/college/qclohylywb0lbw3tkvfx37memlgg1cxl8f.png)
It cannot take negative seconds for the ball to hit the ground.
So it will take 0.72s for the football to hits the ground.