92.7k views
1 vote
Which expression represents the sixth term in binomial expansion (2a-3b)^10

User Vlee
by
8.2k points

1 Answer

4 votes

Therefore the sixth term in the binomial expansion is
=-{10}C_5(2a)^(5) (3b)^5

Explanation:

Given


(2a -3b)^(10)


=^(10)C_0 (2a)^(10) + ^(10)C_1(2a)^9(-3b)+^(10)C_2(2a)^8(-3b)^2+...............+^(10)C_10(-3b)^(10)

So,


T_(n+1)= ^(10)C_n(2a)^((10-n)) (-3b)^n


T_6=T_((5+1)) =^(10)C_5(2a)^(10-5) (-3b)^5

Therefore the sixth term in the binomial expansion is=
{10}C_5(2a)^(10-5) (-3b)^5


=-{10}C_5(2a)^(5) (3b)^5

User Moffen
by
8.7k points