Answer:
a) no roots not in LHP
b) 2 roots not in LHP
c) 2 roots not in the LHP
d) 2 roots not in the LHP
e) 2 roots not in LHP
Step-by-step explanation:
![a) s^4 + 8s^3 + 32s^2 + 80s + 100 = 0\\\\s^4:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:32\:\:\:\:\:\:100\\s^3:\:\:\:8\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:80\\s^2:\:\:\:22\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:100\\s^1:\:\:\:80-(800)/(22) =43.6\\s^0:\:\:\:100](https://img.qammunity.org/2021/formulas/engineering/college/gf8wej441ubnufk30bdff4cls912q26e81.png)
No roots not in the LHP
![b) s^5 + 10s^4 + 30s^3 + 80s^2+344s + 480 =0 \\\\s^5:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:30\:\:\:\:\:\:344\\s^4:\:\:\:10\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:80\:\:\:\:\:\:480\\s^3:\:\:\:22\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:296\\s^2:\:\:\:-545\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:480\\s^1:\:\:\:490\\s^0:\:\:\:480](https://img.qammunity.org/2021/formulas/engineering/college/b079shcvjlvpk4dlr4wfhwkd4bv3a56n20.png)
2 roots not in the LHP
![c) s^4 + 2s^3 + 7s^2 -2s + 8 = 0 \\\\s^4:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:7\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:8\\s^3:\:\:\:2\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:-2\\s^2:\:\:\:8\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:8\\s^1:\:\:\:-4\\s^0:\:\:\:8](https://img.qammunity.org/2021/formulas/engineering/college/k5dtj7ffdjd7xr8ue9my4r6ajokrqt9ghj.png)
There are roots in the RHP (not all coefficients are greater than 0).
2 roots not in the LHP
![d) s^4 + 2s^3 + 7s^2 -2s + 8 = 0 \\\\s^3:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:20\\s^2:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:78\\s^1:\:\:\:-58\\s^0:\:\:\:78](https://img.qammunity.org/2021/formulas/engineering/college/pqocxbzkmyzk8ap5m9u4iw8ddk61gz9t55.png)
There are two sign changes in the first column of the Routh array.
2 roots not in the LHP
![e) s^4 + 2s^3 + 7s^2 -2s + 8 = 0 \\\\s^4:\:\:\:1\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:6\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:25\\s^3:\:\:\:4\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:12\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: new \:\:row \\s^2:\:\:\:3\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:25\\s^1:\:\:\:12-(100)/(3)=-21.3 \\s^0:\:\:\:25](https://img.qammunity.org/2021/formulas/engineering/college/4o7egoyufuujalrjkno2c21lhwxet5b6k1.png)
2 roots not in LHP
check:
⇒
![s^2 = -3 \limits^+_- 4j = 5e^(j(\pi \limits^+_- 0.92))\\\\s = \sqrt5 e^{j( (\pi)/(2) \limits^+_- 0.46)+n\pi j},\:\:\:\:\: n= 0, 1\\](https://img.qammunity.org/2021/formulas/engineering/college/5yzdayahtntps4hsesya09645xi5yn9u7z.png)