Question:
The image of the question is attached below.
Answer:
x = 40
Solution:
Given ΔVDG
ΔVNG.
DG = 207, NQ = 138, GQ = 60, QV = x
In two triangles are similar, then the measures of the corresponding sides are in proportional to each other.
![$\Rightarrow(DG)/(NQ)=(GQ)/(QV)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j35envfow9ny52zdw6w25vt3pxwyfyzdqb.png)
![$ \Rightarrow(207)/(138)=(60)/(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j2cvuyjq5vwjm7me0ptrdccumfv8pyut4c.png)
Do cross multiplication, we get
![$ \Rightarrow{207* x}=138*60](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xmwq8dgyidvhdcocud7kf4uin68irnfgcf.png)
![$ \Rightarrow{207* x}=8280](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g8b2h4uxnx243zyf607c0u09burf2wpx2r.png)
![$ \Rightarrow{207x}=8280](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9pe6kb3xxc378zv9pc3zztxgsceqf2q1gf.png)
Divide by 207 on both sides of the equation, we get
![$ \Rightarrow\frac{{207x}}{207} =(8280)/(207)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qy5ielxbdwueke9xrjw14i78te83ese0j0.png)
![$ \Rightarrow x =(8280)/(207)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nc1pguglid3yz1axur3zuegrzmf5jh6r5e.png)
⇒ x = 40
⇒ QV = 40
Hence the value of x is 40.