118k views
0 votes
EDU 2020

log6^15= 1.511
Write log146−log14 3/2 as a single logarithm
ANSWER A
Expand logw xz .
ANSWER C

EDU 2020 log6^15= 1.511 Write log146−log14 3/2 as a single logarithm ANSWER A Expand-example-1
User Jullie
by
5.9k points

2 Answers

5 votes

For Edge and since this was already answered

EDU 2020 log6^15= 1.511 Write log146−log14 3/2 as a single logarithm ANSWER A Expand-example-1
User Wishmaster
by
6.5k points
7 votes

Answer:


\log_615=1.511


\log_(14)6-\log_(14)(3)/(2)=\log_(14)4


\log_w (x)/(z)=\log_wx-\log_w z

Explanation:

By quotient property :


\log_xa-\log_xb=\log_x(a)/(b)

Given:


\log_630\approx 1.898 and
\log_62\approx 0.387

To find
\log_615

Solution:

Applying quotient property:


\log_630-\log_62=\log_6(30)/(2)=\log_615


\log_615=\log_630-\log_62


\log_615=1.898-0.387


\log_615=1.511

To write
\log_(14)6-\log_(14)(3)/(2) as a single logarithm.

Solution:

Applying quotient property:


\log_(14)6-\log_(14)(3)/(2)=\log_(14)(6)/((3)/(2))


\log_(14)6-\log_(14)(3)/(2)=\log_(14)(6* (2)/(3))


\log_(14)6-\log_(14)(3)/(2)=\log_(14)4

To expand
\log_w (x)/(z)

Solution:

Applying quotient property:


\log_w (x)/(z)=\log_wx-\log_w z

User Greg McMullen
by
6.3k points