187k views
1 vote
Find the following:

a) If
\underset{x \rightarrow 5}{lim} (f(x) - 8)/(x - 5) = 4, find
\underset{x \rightarrow 5}{lim} f(x).
b) If
\underset{x \rightarrow 5}{lim} (f(x) - 8)/(x - 5) = 7, find
\underset{x \rightarrow 5}{lim} f(x).

User Xandman
by
4.6k points

1 Answer

3 votes

Answer:

Explanation:

Limit refers to the value that the function approaches as the input approaches some value.

We say
\displaystyle \lim_(x\rightarrow a)f(x)=L, if f(x) approaches L as x approaches 'a'.

(a)


\displaystyle \lim_(x\rightarrow 5)\left ( (f(x)-8)/(x-5) \right )=4\\(\displaystyle \lim_(x\rightarrow 5)f(x)-\displaystyle \lim_(x\rightarrow 5)8)/(\displaystyle \lim_(x\rightarrow 5)x-\displaystyle \lim_(x\rightarrow 5)5)=4\\


(\displaystyle \lim_(x\rightarrow 5)f(x)-8)/(\displaystyle \lim_(x\rightarrow 5)x-5)=4\\\displaystyle \lim_(x\rightarrow 5)f(x)-8=4\left ( \displaystyle \lim_(x\rightarrow 5)x-5 \right )\\\displaystyle \lim_(x\rightarrow 5)f(x)-8=4\displaystyle \lim_(x\rightarrow 5)x-4(5)\\\displaystyle \lim_(x\rightarrow 5)f(x)-8=4(5)-4(5)\\


\displaystyle \lim_(x\rightarrow 5)f(x)-8=20-20=0\\\displaystyle \lim_(x\rightarrow 5)f(x)=8

(b)


\displaystyle \lim_(x\rightarrow 5)\left ( (f(x)-8)/(x-5) \right )=7\\(\displaystyle \lim_(x\rightarrow 5)f(x)-\displaystyle \lim_(x\rightarrow 5)8)/(\displaystyle \lim_(x\rightarrow 5)x-\displaystyle \lim_(x\rightarrow 5)5)=7\\(\displaystyle \lim_(x\rightarrow 5)f(x)-8)/(\displaystyle \lim_(x\rightarrow 5)x-5)=7\\


\displaystyle \lim_(x\rightarrow 5)f(x)-8=7\left ( \displaystyle \lim_(x\rightarrow 5)x-5 \right )\\\displaystyle \lim_(x\rightarrow 5)f(x)-8=7\displaystyle \lim_(x\rightarrow 5)x-7(5)\\\displaystyle \lim_(x\rightarrow 5)f(x)-8=7(5)-7(5)\\\displaystyle \lim_(x\rightarrow 5)f(x)-8=35-35=0\\\displaystyle \lim_(x\rightarrow 5)f(x)=8

User Fletom
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.