174k views
1 vote
Find the limit of the function algebraically.

limit as x approaches negative two of quantity x squared minus four divided by quantity x plus two.

1 Answer

4 votes

Answer:

i)
$\lim_{x\to\hspace{0.1cm}-2} ((x^(2) - 4))/(x + 2) $
= \hspace{0.1cm} $\lim_{x\to\hspace{0.1cm}-2} ((x-2)(x+2))/(x + 2) $
= \hspace{0.1cm} $\lim_{x\to\hspace{0.1cm}-2} (x-2) $ = -2 -2 = -4

Explanation:

i)
$\lim_{x\to\hspace{0.1cm}-2} ((x^(2) - 4))/(x + 2) $
= \hspace{0.1cm} $\lim_{x\to\hspace{0.1cm}-2} ((x-2)(x+2))/(x + 2) $
= \hspace{0.1cm} $\lim_{x\to\hspace{0.1cm}-2} (x-2) $ = -2 -2 = -4

User Endurium
by
5.4k points