Answer:
Solve by mathematical induction.
Explanation:
Let
be integers with
.
We need to prove that
![a_1u_1 + a_2u_2 + \ldots + a_ku_k = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/tusiuh5xwfvq9hd6prp12dnft99by7aeta.png)
has a solution in integers
![u_1,u_2, \ldots, u_k \in \mathbb{Z}.](https://img.qammunity.org/2021/formulas/mathematics/high-school/5l8apzskthonp3frh8cloz91tjs9if4pps.png)
To do so, we will use mathematical induction.
The base case
Consider the case for
. Then,
and we need to prove that
.
Since the largest positive integer dividing
and
is 1, by the Euclidean algorithm, we have
![\left( \exist u_1, u_2 \in \mathbb{Z}\right) a_1u_1 + a_2u_2 = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/8ntkvzkhqkyt24kobphwi40zb66e7jy58v.png)
Therefore, the statement is true for
.
The induction step
This step proves that if the property holds for one natural number
, then it holds for the next natural number
. Combined wit the base case, it will establish the property for
![\forall n \in \mathbb{N}.](https://img.qammunity.org/2021/formulas/mathematics/high-school/yh6dotnrvuhdbwojonjjwgeuht4zhtr53h.png)
Now, suppose that the statement is true for
.
This means that
![GCD(a_1, a_2, \ldots, a_k) = 1 \implies \left( \exists u_1, u_2, \ldots u_k \in \mathbb{Z}\right) a_1u_1 + a_2u_2 +\ldots+ a_ku_k = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/o3t5v1akwy7d864gatewet0okxubwx3ojv.png)
Let's check if the statement holds true for the next natural number, that is
.
![GCD(a_1, a_2, \ldots, a_(k+1)) = 1 \implies GCD(a_1, a_2, \ldots, a_k) = 1 \: \wedge \: GCD(a_k, a_(k+1)) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ysj0e8d8rfp71wo2vhscnipiqkwfp7rwrv.png)
By the Euclidean algorithm, we have
![GCD(a_1, a_2, \ldots, a_(k)) = 1 \implies \left(\exists u_1,u_2, \ldots, u_k \in \mathbb{Z}\right)a_1u_1 + a_2u_2 + \ldots + a_ku_k = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/d1ot3ovrks6yzssfpdtl7d3eanc4e09hho.png)
and
![GCD(a_k, a_(k+1)) = 1 \implies \left(\exists u_1,u_2, \in \mathbb{Z}\right)a_ku_k + a_(k+1)u_(k+1) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/wagyd090lej1s6asn0t9c0t4igc8na0gnn.png)
Now, multiply the obtained equations.
![(a_1u_1 + a_2u_2 + \ldots + a_ku_k)(a_ku_k + a_(k+1)u_(k+1)) = 1 \cdot 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/cm5mfe0qoyrewxodvsqnziqd6qyjmbu5wx.png)
Removing parenthesis gives
![a_1u_1 \cdot a_ku_k + a_2u_2\cdot a_ku_k + \ldots + a_ku_k \cdot a_ku_k +\\a_1u_1 \cdot a_(k+1)u_(k+1) + a_2u_2\cdot a_(k+1)u_(k+1) + \ldots + a_ku_k \cdot a_(k+1)u_(k+1) =1](https://img.qammunity.org/2021/formulas/mathematics/high-school/7oveu9mw0dj2s5ybq4c1jq51vy38x9mpx7.png)
Now, collect up the terms by
.
![a_1\underbrace{(u_1 a_ku_k +u_1 \cdot a_(k+1)u_(k+1))}_{\in \mathbb{Z}}+ a_2\underbrace{(u_2 a_ku_k+ u_2 a_(k+1)u_(k+1) )}_{\in \mathbb{Z}} + \ldots + a_(k+1)\underbrace{(a_ku_k u_(k+1))}_{\in \mathbb{Z}} \\ =1](https://img.qammunity.org/2021/formulas/mathematics/high-school/qjrxmxldia6s8e5rm895lp64rvakcuk7dq.png)
Now, denote
![u'_1 =u_1 a_ku_k +u_1 \cdot a_(k+1)u_(k+1),u'_2=u_2 a_ku_k+ u_2 a_(k+1)u_(k+1), \ldots, u'_(k+1) =a_ku_ku_(k+1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hd6jvi0d3kje38ox9za4pdmrulno98ms3m.png)
Therefore,
![\left(\exists u'_1,u'_2, \ldots, u'_(k+1) \in \mathbb{Z}\right)a_1u'_1 + a_2u'_2 + \ldots + a_(k+1)u'_(k+1) = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ixsch0mz9r65vd5n0o59n3v3r06uzstotv.png)
Hence, the equation
![a_1u_1 + a_2u_2 + \ldots + a_ku_k = 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/tusiuh5xwfvq9hd6prp12dnft99by7aeta.png)
has a solution in integers
![u_1,u_2, \ldots, u_k \in \mathbb{Z}.](https://img.qammunity.org/2021/formulas/mathematics/high-school/5l8apzskthonp3frh8cloz91tjs9if4pps.png)