Answer:
a) vₓ = 8.3128 m / s , v_{y} = 1,698 m / s , b)v = 8.484 m / s , c) θ = 83.14°
Step-by-step explanation:
Let's use the kinematic equations for two-dimensional movement
Let's look for the components of acceleration using trigonometry
sin26.5 = ay / a
cos 26..5 = ax / a
ay = a sin26.5
ax = a cos 26.5
ay = 0.49 sin26.5
ax = 0.49 cos 26.5
ay = 0.2186 m / s2
ax = 0.4385 m / s2
a) Having the accelerations we look for the speed in each axis
vₓ = v₀ₓ + ax (t-t₀)
vₓ = 2.7 + 0.4385 (24.0 - 11.2)
vₓ = 8.3128 m / s
= v_{oy} + a_{y} (t-to)
v_{y} = -1.1 + 0.2186 (24.0 - 11.2)
b) let's use Pythagoras' theorem to find the magnitude
v = √ Vₓ² + v_{y}²
v = Ra (8.3128² + 1,698²)
v = 8.484 m / s
c) Let's use trigonometry to find the angles
tan tea = v_{y} / vₓ
θ = tan⁻¹ v_{y} / vₓ
θ = tan⁻¹ 1,698 / 8.3128
θ = 83.14°