Answer:
1. 389 kJ; 2. 7.5 µg; 3. 6.25 days
Step-by-step explanation:
1. Energy required
The water is converted directly from a solid to a gas (sublimation).
They don't give us the enthalpy of sublimation, but
![\Delta_{\text{sub}}H = \Delta_{\text{fus}}H + \Delta_{\text{vap}}H = 6.01 + 40.68 = 46.69 \text{ kJ}\cdot\text{mol}^(-1)](https://img.qammunity.org/2021/formulas/chemistry/middle-school/dbg5ablnaik4dhzj46vti368xzemve72ue.png)
The equation for the process is then
Mᵣ: 18.02
46.69 kJ + H₂O(s) ⟶ H₂O(g)
m/g: 150
(a) Moles of water
![\text{Moles} = \text{150 g} * \frac{\text{1 mol}}{\text{18.02 g}} = \text{8.324 mol}](https://img.qammunity.org/2021/formulas/chemistry/middle-school/3bagfjy3d35zoabtk83788kf3dtrqsdsda.png)
(b) Heat removed
46.69 kJ will remove 1 mol of ice.
![\text{Heat removed} = \text{8.234 mol} * \frac{\text{46.69 kJ}}{\text{1 mol}} = \textbf{389 kJ}\\\text{It takes $\large \boxed{\textbf{389 kJ}}$ to remove 150 g of ice}](https://img.qammunity.org/2021/formulas/chemistry/middle-school/aqvgxnv61osupyghyogcvq2lmmogjjqqf9.png)
2. Mass of water vapour in the freezer
For this calculation, we can use the Ideal Gas Law — pV = nRT
(a) Moles of water
Data:
![p = 1.00 * 10^(-3)\text{ torr } * \frac{\text{1 atm}}{\text{760 torr}} = 1.316 * 10^(-6)\text{ atm}](https://img.qammunity.org/2021/formulas/chemistry/middle-school/2jpgzfcoo90rd13krcmxdw7qvf8ev0wd4o.png)
V = 5 L
T = (-80 + 273.15) K = 193.15 K
Calculation:
![\begin{array}{rcl}pV & = & nRT\\1.316 * 10^(-6)\text{ atm} * \text{5 L} & = & n * 0.08206 \text{ L}\cdot\text{atm}\cdot\text{K}^(-1)\text{mol}^(-1) * \text{193.15 K }\\6.6 * 10^(-6) & = & 15.85n\text{ mol}^(-1) \\n & = & \frac{6.6 * 10^(-6)}{15.85\text{ mol}^(-1)}\\\\& = & 4.2 * 10^(-7) \text{ mol}\\\end{array}](https://img.qammunity.org/2021/formulas/chemistry/middle-school/owdk4w6r04b0e9ztc9tfwtjeltll223j6e.png)
(b) Mass of water
![\text{Mass} = 4.2 * 10^(-7) \text{ mol} * \frac{\text{18.02 g}}{\text{1 mol}} = 7.5 * 10^(-6)\text{ g} = 7.5 \, \mu \text{g}\\\\\text{At any given time, there are $\large \boxed{\textbf{7.5 $\mu$g}}$ of water vapour in the freezer.}](https://img.qammunity.org/2021/formulas/chemistry/middle-school/enr0dxbein3gv1gwurwfe09t1f7eyl5n5c.png)
3. Time for removal
You must remove 150 mL of water.
It takes 1 h to remove 1 mL of water.
![\text{Time} = \text{150 mL} * \frac{\text{1 h}}{\text{1 mL}} = \text{150 h} = \text{6.25 days}](https://img.qammunity.org/2021/formulas/chemistry/middle-school/di3lesdm8f6z6fl4q1m0y3dhs5q1ge0rna.png)