102,956 views
25 votes
25 votes
Suppose that y varies inversely with x. Write a function that models the inverse function.

x = 6 when y = 8

User Moken
by
2.9k points

2 Answers

8 votes
8 votes
y=k/x
8=k/6
k=48
:y=48/x
User Aelexe
by
3.1k points
14 votes
14 votes


\qquad \qquad \huge\text{Anѕwer}♨

Let's Solve ~

❖ Aѕ givєn in thє quєѕtiσn, ч vαriєѕ invєrѕєlч with х, thiѕ єхprєѕѕiσn cαn вє rєprєѕєntєd αѕ :


\qquad \Rrightarrow \rm y \propto (1)/(x)

➻ To rєplαcє prσpσrtiσnαlitч ѕign with єquαlѕ tσ, wє hαvє tσ uѕє α cσnѕtαnt (k)


\qquad \Rrightarrow \rm y = k *(1)/(x)


\qquad \Rrightarrow \rm \frac{}{} xy = k

➻ nσw, plug in vhє vαluєѕ σf х αnd ч fσr α ѕpєcific inѕtαnt, thαt'ѕ givєn in thє quєѕtiσn ~

  • х = 6, whєn ч = 8


\qquad \Rrightarrow \rm \frac{}{} 6 * 8 = k


\qquad \Rrightarrow \rm \frac{}{} k = 48

thєrєfσrє, vαluє σf prσpσrtiσnαlч cσnѕtαnt iѕ 48

➼ ѕσ, thє rєquirєd єхprєѕѕiσn will вє :


\qquad \Rrightarrow \rm \frac{}{} xy = 48

User ParvBanks
by
3.5k points