Answer:
![\sf (x+2)^2+(y-2)^2=2](https://img.qammunity.org/2023/formulas/mathematics/college/s84gl9gzo45s4vpfwm3885s0p7gcsq5rvq.png)
Explanation:
If RS is the diameter of the circle, then the midpoint of RS will be the center of the circle.
![\sf midpoint=\left((x_s-x_r)/(2)+x_r,(y_s-y_r)/(2)+y_r \right)](https://img.qammunity.org/2023/formulas/mathematics/college/4jwtaxukpfkjk4l0nwrcaeft0vuqtkaqh0.png)
![\sf =\left((-1-(-3))/(2)+(-3),(3-1)/(2)+1 \right)](https://img.qammunity.org/2023/formulas/mathematics/college/9sqjg5jye1e8030z1vkdgpbfuwsnkvcsfb.png)
![\sf =(-2, 2)](https://img.qammunity.org/2023/formulas/mathematics/college/max9q9h7lco3aqe03p9fpo20ta87t41qg9.png)
Equation of a circle:
![\sf (x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/80ua4mu5ls5a75yfujwm4dvvs3yvejhvxd.png)
(where (h, k) is the center and r is the radius)
Substituting found center (-2, 2) into the equation of a circle:
![\sf \implies (x-(-2))^2+(y-2)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/tgsjy5y51gea23uhxh1j8q3ftlubnb7p6d.png)
![\sf \implies (x+2)^2+(y-2)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/fqzyqb8u1nupgi7p4o70sfbigtk4qapv0p.png)
To find
, simply substitute one of the points into the equation and solve:
![\sf \implies (-3+2)^2+(1-2)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/ufaj5gbs4nblkloxz01piqsjhldiy274kt.png)
![\sf \implies 1+1=r^2](https://img.qammunity.org/2023/formulas/mathematics/college/fvmglyesbj9f2wehw00dvw1sjpxlhvd3fj.png)
![\sf \implies r^2=2](https://img.qammunity.org/2023/formulas/mathematics/college/etrit8rhj9o856wnr6b3h64n98zuog0xj6.png)
Therefore, the equation of the circle is:
![\sf (x+2)^2+(y-2)^2=2](https://img.qammunity.org/2023/formulas/mathematics/college/s84gl9gzo45s4vpfwm3885s0p7gcsq5rvq.png)