47.4k views
3 votes
Find the derivative with respect to x of y = (3x + x^2)^5

Find the derivative with respect to x of y = (3x + x^2)^5-example-1

1 Answer

4 votes

The required "option A)
5(3x + x^2)^(4) (3+2x)" is correct.

Explanation:

We have,


y = (3x + x^2)^5 ..... (1)

To find,
(dy)/(dx) = ?

Differentiating equation (1) w.r.t. 'x', we get


(dy)/(dx)= (d[(3x + x^2)^5])/(dx)


(dy)/(dx)=5(3x + x^2)^(5-1) (d(3x + x^2))/(dx)

[ ∵
y=x^(n)
(dy)/(dx)=nx^(n-1)]


(dy)/(dx)=5(3x + x^2)^(4) (3(1) + 2x^(2-1))


(dy)/(dx)=5(3x + x^2)^(4) (3+2x)

Thus, the required "option A)
5(3x + x^2)^(4) (3+2x)" is correct.

User Diego Favero
by
5.9k points