Answer:
a. -2x^2 + 3x+5=y
b.-x^2 +5x-4=y
c.-x^2 +6x-12=y
Explanation:
a.y=-2x^2 +bx+c
the points P and Q lie on curve
![\left \{ {{-b+c=2} \atop {b+c=8}} \right.](https://img.qammunity.org/2023/formulas/mathematics/college/hz9oqnmqwhnjivqtz8e6pu7j81t4r6cbf1.png)
=> b=3, c=5
b. delta = b^2 +4c
x1=
=4
=>
=8
x2=
=1
=>2=b+
![\sqrt{b^(2)+4c }](https://img.qammunity.org/2023/formulas/mathematics/college/2idmcmsap77dkzlt7jh2pk479g6hc8cw65.png)
suppose :
= a
=>
![\left \{ {{a+b=2} \atop {-a+b=8}} \right.](https://img.qammunity.org/2023/formulas/mathematics/college/ezgnepfm732zj01s9ew70g9ms2zs21m9j3.png)
=> a=-3
b=5
a=-3 =>
=-3 => b^2 +4c =9 =>5^2 +4c=9 => c=-4.
c.vertex (3;-3)
=3 => b =6
=
=-3 =>-b^2+4ac=12 => c=-12.