Answer:
35.7 m
Step-by-step explanation:
Let
![\mid A\mid=18.5 m](https://img.qammunity.org/2021/formulas/physics/high-school/z3eio2evrpzn1p5ly0s2nnryibzfydu6n3.png)
![\mid B\mid=41 m](https://img.qammunity.org/2021/formulas/physics/high-school/iqs4v1eg77s0oithwf697o3fm4erpadf8x.png)
We have to find the distance between Joe's and Karl'e tent.
![A_x=Acos\theta](https://img.qammunity.org/2021/formulas/physics/high-school/wo6wiur0cswlmtehmiw08u2s4tvfhftc90.png)
![A_y=Asin\theta](https://img.qammunity.org/2021/formulas/physics/high-school/4j9tlh0tg5ltwzhzi3mj28o1evldtox1l7.png)
Substitute the values then we get
![A_x=18.5cos23^(\circ)=17 m](https://img.qammunity.org/2021/formulas/physics/high-school/dx30n571946y71fmr36z72kmjmpy4u64g7.png)
![A_y=18.5sin 23^(\circ)=7.2 m](https://img.qammunity.org/2021/formulas/physics/high-school/7z3tct571wzmvjrgcp6s2b0h6lti8rq4jt.png)
![B_x=41cos37.5^(\circ)=32.5 m](https://img.qammunity.org/2021/formulas/physics/high-school/h9jr5pdr0pzng80qjjs8ydth3f1t5q9xdz.png)
![B_y=41sin37.5^(\circ)=-24.96 m](https://img.qammunity.org/2021/formulas/physics/high-school/kmab8q7tnvcf4fsr573nhsvwm10p20lwrw.png)
Because vertical component of B lie in IV quadrant and y-inIV quadrant is negative.
By triangle addition of vector
![B=A+C](https://img.qammunity.org/2021/formulas/physics/high-school/vmkj1emaqokxq8ot7oz66vz8i38ri6lpc0.png)
![C=B-A](https://img.qammunity.org/2021/formulas/physics/high-school/l9uig4i33dqvfa3w9jr6shxen7y5ytcyh9.png)
![C_x=B_x-A_x=32.5-17=15.5 m](https://img.qammunity.org/2021/formulas/physics/high-school/u5jnd7iqk4mfsp0dkamz8uu96h3mqbkd2v.png)
![C_y=B_y-A_y=-24.96-7.2=-32.16\approx=-32.2 m](https://img.qammunity.org/2021/formulas/physics/high-school/3gm6dvhcxojl6fbju2u2tft6g6l48wf886.png)
![\mid C\mid=√(C^2_x+C^2_y)](https://img.qammunity.org/2021/formulas/physics/high-school/cmqk5i07pz2vr1o4z56a6cy37ztf1bpi0r.png)
![\mid C\mid=√((15.5)^2+(-32.2)^2)=35.7 m](https://img.qammunity.org/2021/formulas/physics/high-school/9gonwnyc70lj8rhr45pisqyqyyo7cgv973.png)
Hence, the distance between Joe's and Karl's tent=35.7 m