Answer:
0.613 meters is the smallest possible inside length of the tank.
Step-by-step explanation:
Length of the cubical steel tank =- l
Volume of the cube =
![l^3](https://img.qammunity.org/2021/formulas/chemistry/high-school/9u0vuxqdiej599f7abvv0or6swple8s43t.png)
Volume of cubical steel tank =
![230 L = 230* 0.001 m^3](https://img.qammunity.org/2021/formulas/chemistry/high-school/4q0u7afia9fwml9ywqrwkoz4z0o18cqv4p.png)
![1 L = 0.001 m^3](https://img.qammunity.org/2021/formulas/chemistry/high-school/34ptrqwil014krp0ozlkaaxgmvwfb93fkt.png)
![V=l^3](https://img.qammunity.org/2021/formulas/chemistry/high-school/qb8su2qxcw2tyrbwbovvkn8wirsguak8dn.png)
![230* 0.001 m^3=l^3](https://img.qammunity.org/2021/formulas/chemistry/high-school/107404k6gp5btnzej6bhqxttbi7iznf92o.png)
Solving of l :
![l=0.6127 m\approx 0.613 m](https://img.qammunity.org/2021/formulas/chemistry/high-school/a8ulv4scpq7hgmnd6wsdv13st1dqeynh40.png)
0.613 meters is the smallest possible inside length of the tank.