181k views
2 votes
Consider the following planes. x + y + z = 6, x + 7y + 7z = 6 (a) Find parametric equations for the line of intersection of the planes. (Use the parameter t.) (x(t), y(t), z(t)) = (b) Find the angle between the planes. (Round your answer to one decimal place.) °

1 Answer

2 votes

Answer:

a.
x=6,y=-6t,z=6t

b.
\theta=29.5^(\circ)

Explanation:

We are given that


x+y+z=6


x+7y+7z=6

a.Substitute z=0


x+y=6...(1)


x+7y=6..(2)

Subtract equation (1) from equation (2)


6y=0


y=0

Substitute y=0 in equation(1)


x=6

The point (6,0,0) lie on a line.


r_0=(x_0,y_0,z_0)=(6,0,0)

Let
A=<1,1,1>


B=<1,7,7>


A* B=\begin{vmatrix}i&amp;j&amp;k\\1&amp;1&amp;1\\1&amp;7&amp;7\end{vmatrix}


A* B=i(7-7)-j(7-1)+k(7-1)=-6j+6k

Therefore, the vector
a'=(a,b,c)=<0,-6,6>

Line is parallel to vector a' and passing through the point (6,0,0).

The parametric equation is given by


x=x_0+at,y=y_0+bt,z=z_0+ct

Using the formula

The parametric equation is given by


x=6,y=-6t,z=6t

Angle between two plane


a_1x+b_1y+c_1z=d_1

and
a_2x+b_2y+c_2z=d_2


cos\theta=((a_1,b_1,c_1)\cdot (a_2,b_2,c_2))/(√(a^2_1+b^2_1+c^2_1)\cdot √(a^2_2+b^2_2+c^2_2))

Using the formula


cos\theta=((1,1,1)\cdot(1,7,7))/(√(1+1+1)* √(1+7^2+7^2))


cos\theta=(1+7+7)/(\sqrt 3* 3√(11))


cos\theta=(15)/(3√(33))}=(5)/(√(33))


\theta=cos^(-1)(0.87)=29.5^(\circ)

Where
\theta in degree.

User Kutbi
by
9.7k points