181k views
2 votes
Consider the following planes. x + y + z = 6, x + 7y + 7z = 6 (a) Find parametric equations for the line of intersection of the planes. (Use the parameter t.) (x(t), y(t), z(t)) = (b) Find the angle between the planes. (Round your answer to one decimal place.) °

1 Answer

2 votes

Answer:

a.
x=6,y=-6t,z=6t

b.
\theta=29.5^(\circ)

Explanation:

We are given that


x+y+z=6


x+7y+7z=6

a.Substitute z=0


x+y=6...(1)


x+7y=6..(2)

Subtract equation (1) from equation (2)


6y=0


y=0

Substitute y=0 in equation(1)


x=6

The point (6,0,0) lie on a line.


r_0=(x_0,y_0,z_0)=(6,0,0)

Let
A=<1,1,1>


B=<1,7,7>


A* B=\begin{vmatrix}i&amp;j&amp;k\\1&amp;1&amp;1\\1&amp;7&amp;7\end{vmatrix}


A* B=i(7-7)-j(7-1)+k(7-1)=-6j+6k

Therefore, the vector
a'=(a,b,c)=<0,-6,6>

Line is parallel to vector a' and passing through the point (6,0,0).

The parametric equation is given by


x=x_0+at,y=y_0+bt,z=z_0+ct

Using the formula

The parametric equation is given by


x=6,y=-6t,z=6t

Angle between two plane


a_1x+b_1y+c_1z=d_1

and
a_2x+b_2y+c_2z=d_2


cos\theta=((a_1,b_1,c_1)\cdot (a_2,b_2,c_2))/(√(a^2_1+b^2_1+c^2_1)\cdot √(a^2_2+b^2_2+c^2_2))

Using the formula


cos\theta=((1,1,1)\cdot(1,7,7))/(√(1+1+1)* √(1+7^2+7^2))


cos\theta=(1+7+7)/(\sqrt 3* 3√(11))


cos\theta=(15)/(3√(33))}=(5)/(√(33))


\theta=cos^(-1)(0.87)=29.5^(\circ)

Where
\theta in degree.

User Kutbi
by
9.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories