Answer:
The combined standard deviation is 1.58114.
Explanation:
The formula to compute the combined standard deviations of two different data sets is:
![SD_(c) =\sqrt{(n_(X)S^(2)_(X)+n_(2)S^(2)_(Y)+n_(X)(\mu_(X)-\mu_(c))^(2)+n_(Y)(\mu_(Y)-\mu_(c))^(2))/(n_(X)+n_(Y))](https://img.qammunity.org/2021/formulas/mathematics/college/yd2l3k8vt372unqvkf7dpndwfmuouqcvqd.png)
Here
is the combined mean given by:
![\mu_(c)=(n_(X)\mu_(X)+n_(Y)\mu_(Y))/(n_(X)+n_(Y))](https://img.qammunity.org/2021/formulas/mathematics/college/sr409ckvq9jr7exifzn2571t9gedsa7y6t.png)
It is provided that the sample size is same for both the data sets, i.e.
![n_(X) = n_(Y)=n](https://img.qammunity.org/2021/formulas/mathematics/college/v6wxikxxsrnsie0ar5etolmzjmrjpi1n1y.png)
Compute the combined mean as follows:
![\mu_(c)=(n_(X)\mu_(X)+n_(Y)\mu_(Y))/(n_(X)+n_(Y))\\=((n*10)+(n*10))/(n+n)}\\=(20n)/(2n)\\ =10](https://img.qammunity.org/2021/formulas/mathematics/college/yvp8gtx3jf70drk6ajmkn31okr91rjjlx1.png)
Compute the combined standard deviation as follows:
![SD_(c) =\sqrt{(n_(X)S^(2)_(X)+n_(2)S^(2)_(Y)+n_(X)(\mu_(X)-\mu_(c))^(2)+n_(Y)(\mu_(Y)-\mu_(c))^(2))/(n_(X)+n_(Y))}\\=\sqrt{((n*1^(2))+(n*2^(2))+(n(10-10))+(n(10-10)))/(n+n)}\\=\sqrt{(n+4n)/(2n) } \\=\sqrt{(5n)/(2n) } \\=\sqrt{(5)/(2)} \\=1.58114](https://img.qammunity.org/2021/formulas/mathematics/college/ak92ld5197nemg8qsslbod5zqgbn39ntjh.png)
Thus, the combined standard deviation is 1.58114.