213k views
1 vote
Find inverse function of:
g(x) = 4x/3-x

User Jeltok
by
8.4k points

1 Answer

6 votes


\mathrm{Inverse\:of}\:(4x)/(3-x) \text{ is } (3x)/(x+4)

Solution:

Given that we have to find the inverse function


g(x) = (4x)/(3-x)

If a function f(x) is mapping x to y, then the inverse function of f(x) maps y back to x


y=(4x)/(3-x)


\mathrm{Interchange\:the\:variables}\:x\:\mathrm{and}\:y


x=(4y)/(3-y)

Now solve the above expression for "y"


x=(4y)/(3-y)\\\\\mathrm{Multiply\:both\:sides\:by\:}3-y\\\\x\left(3-y\right)=(4y)/(3-y)\left(3-y\right)


x(3-y) = 4y


\mathrm{Expand\:}x\left(3-y\right):\quad 3x-xy


3x-xy = 4y


\mathrm{Subtract\:}3x\mathrm{\:from\:both\:sides}\\\\3x-xy-3x=4y-3x\\\\\mathrm{Simplify}\\\\-xy=4y-3x\\\\\mathrm{Subtract\:}4y\mathrm{\:from\:both\:sides}\\\\-xy-4y=4y-3x-4y\\\\\mathrm{Simplify}\\\\-xy-4y=-3x\\\\


\mathrm{Factor\:out\:common\:term\:}y\\\\-y(x+4) = -3x


\mathrm{Divide\:both\:sides\:by\:}-\left(x+4\right)\\\\(-y\left(x+4\right))/(-\left(x+4\right))=(-3x)/(-\left(x+4\right))\\\\\mathrm{Simplify}\\\\y = (-3x)/(-(x+4))\\\\\text{Cancel the negative sign in numerator and denominator }\\\\y = (3x)/((x+4))


\text{ Replace y with } g^(-1)(x)


g^(-1)(x) = (3x)/(x+4)

Thus we have got,


\mathrm{Inverse\:of}\:(4x)/(3-x) \text{ is } (3x)/(x+4)

User LPCRoy
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories