4.6k views
0 votes
Evaluate the following limit.

ModifyingBelow lim With x right arrow minus 4 left parenthesis 2 x cubed minus 4 x squared plus 2 x plus 9 right parenthesis limx→−4

2x3−4x2+2x+9

ModifyingBelow lim With x right arrow minus 4 left parenthesis 2 x cubed minus 4 x squared plus 2 x plus 9 right parenthesis limx→−4

2x3−4x2+2x+9equals=nothing

​(Simplify your​ answer.)

1 Answer

6 votes

Answer:

-191

Explanation:

A limit is the value that a function approaches as the input approaches some value.

We say
\displaystyle \lim_(x\rightarrow a)f(x)=L if f(x) approaches to L as x approaches to a.

To find:
\displaystyle \lim_(x\rightarrow -4)2x^3-4x^2+2x+9

Solution:

Let
f(x)=2x^3-4x^2+2x+9

On putting x = -4 in function
f(x)=2x^3-4x^2+2x+9, we get


\displaystyle \lim_(x\rightarrow -4)2x^3-4x^2+2x+9\\=2(-4)^3-4(-4)^2+2(-4)+9\\=2(-64)-4(16)-8+9\\=-128-64-8+9\\=-128-63\\=-191

User Sersun
by
4.9k points