Question
Find each of the following
(a) magnitude and (b) direction of the displacement,
the (c) magnitude and (d) direction of the average velocity, and
the (e) magnitude and (f) direction of the average acceleration?
Answer:
A. 93.01m
B.-53.75°
C. -5.5i + 7.5j m/s
D. 9.301m/s
E. 2.83 m/s²
F. 45.1°
Given
r0 = -55i m
v0 = -20i m/s
10 seconds later
r = 75j m
v = 20j m/s
Explanation:
A.
Magnitude of displacement = √(r0)² + (r)²
Magnitude = √-55² + 75²
Magnitude = √3025 + 5625
Magnitude = √8650
Magnitude = 93.00537618869137
Magnitude of displacement= 93.01 m -------------- Approximated
B.
Direction of displacement
TanФ = r/r0
Ф = tan-1 (r/r0)
Ф = tan-1 (75/-55)
Ф = tan-1 (-1.364)
Ф = −53.75°
C.
Magnitude of Velocity
Average velocity = Change in distance / Change in time
Average Velocity = (-55i + 75j)/10
Average Velocity = -5.5i + 7.5j m/s ------- Magnitude of velocity
D.
Direction of velocity = |Magnitude of displacement / time
Direction of velocity = 93.01/10
Direction of velocity = 9.301m/s
E.
Magnitude of Acceleration
Average Acceleration = Average Velocity/Time
Average Acceleration = Change in velocity/ Time
Average Acceleration = (v - v0)/t
= (20i - (-20j))10
Average Acceleration = 2i m/s² + 2j m/s²
Magnitude of Acceleration = √(2)² + (2)²
Magnitude = √4+4
Magnitude= √8
Magnitude of Acceleration = 2.828427124746190
Magnitude of Acceleration = 2.83 m/s² ------ Approximated
F.
Direction of Acceleration
Using ai = |a|cosФ
cosФ = |a|/ai
Ф = cos-1(|a|/ai)
Ф = cos-1(2/2.83)
Ф = cos-1(0.7061)
Ф = 45.08151997214929
Ф = 45.1° ---------- approximated