Answer:
The value of x is 9.
The value of y is 18.
Explanation:
The given triangle is a right angled triangle.
We have:
![$ tan(x) = (opp)/(adj) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wsyemqc7quor5yb0hnv5cei2ct4ft0x94i.png)
Therefore,
![$ tan(30) = (x)/(9√(3)) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hshy8xnorckk9jm3i8mdqu7y3wdz4np12v.png)
Since,
![$ tan(30) = (1)/(√(3)) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/umzjpidploa1qux6mmvv0dmywcp7si0iln.png)
Therefore, we have:
![$ (1)/(√(3)) = (x)/(9√(3)) $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pyy0neb41zm2plr9r84ino12uwhb4k9rks.png)
![$ \implies x = 9 $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ximf0zhy6qr4a6ejqhtii667uuzs6ktdoa.png)
Now, 'y' is the hypotenuse.
Use Pythagoras theorem, we have
![$ x^2 + (9√(3)})^2 = y^2 $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/605uim75g754wbqxrgi41l1kozfgvsqc7t.png)
Substituting x = 9, we get:
81 + 81(3) = y²
![$ \implies y^2 = 81 + 243 $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vfgvkhgb3ogo631wejdv63btxpcp8xahtx.png)
![$ \implies y^2 = 324 $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/et97xwl0iglpworkvydyhxbcwnnu44fr2r.png)
![$ \therefore y = 18 $](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2mbcz4m968r4jkq2uz6y1bgp9k4wgqn92a.png)
Hence, the value of y = 18.