43.7k views
0 votes
Use the given data to find the equation of the regression line. x 44 44 11 11 55 y 66 55 negative 1−1 negative 3−3 88 ModifyingAbove y with caretyequals=nothingplus+nothingx​ (Round to two decimal places as​ needed.)

User Garrett R
by
4.3k points

1 Answer

4 votes

Answer:


y=1.98 x -24.34

Explanation:

Assuming the following data

X: 44, 44, 11, 11, 55

Y: 66, 55, -1, -3, 88

We want to find a linear model
Y= mx +b

For this case we need to calculate the slope with the following formula:


m=(S_(xy))/(S_(xx))

Where:


S_(xy)=\sum_(i=1)^n x_i y_i -((\sum_(i=1)^n x_i)(\sum_(i=1)^n y_i))/(n)


S_(xx)=\sum_(i=1)^n x^2_i -((\sum_(i=1)^n x_i)^2)/(n)

So we can find the sums like this:


\sum_(i=1)^n x_i =44+44+11+11+55=165


\sum_(i=1)^n y_i =66+55-1-3+88=205


\sum_(i=1)^n x^2_i =7139


\sum_(i=1)^n y^2_i =15135


\sum_(i=1)^n x_i y_i =10120

With these we can find the sums:


S_(xx)=\sum_(i=1)^n x^2_i -((\sum_(i=1)^n x_i)^2)/(n)=7139-(165^2)/(5)=1694


S_(xy)=\sum_(i=1)^n x_i y_i -((\sum_(i=1)^n x_i)(\sum_(i=1)^n y_i))/(n)=10120-(165*205)/(5)=3355

And the slope would be:


m=(3355)/(1694)=1.98

Nowe we can find the means for x and y like this:


\bar x= (\sum x_i)/(n)=(165)/(5)=33


\bar y= (\sum y_i)/(n)=(205)/(5)=41

And we can find the intercept using this:


b=\bar y -m \bar x=41-(1.98*33)=-24.34

So the line would be given by:


y=1.98 x -24.34

User Artium
by
4.1k points