Answer:
Resultant force will be equal to 7.946 N
Step-by-step explanation:
We have given two forces of magnitude
Magnitude of second force
![F_1=6.65N](https://img.qammunity.org/2021/formulas/physics/college/39bcmb2scp80h264xbf37nzfkm5cnxdnwc.png)
And magnitude of force
![F_2=4.35N](https://img.qammunity.org/2021/formulas/physics/college/j406p4xqa68us73mhf4kmwz1i09twn78v2.png)
It is given that forces are perpendicular to each other
So angle between forces is
![\Theta =90^(\circ)](https://img.qammunity.org/2021/formulas/physics/college/owcyogjm4xz64ccwkuxf2g6lzlbnpxpri8.png)
We have to find the sum of magnitude resultant force
So force
![F=√(F_1^2+F_2^2+2F_1F_2cos\Theta )](https://img.qammunity.org/2021/formulas/physics/college/zel0uwnfpjqd9y89pl7jvewlzd8tury0mp.png)
So
![F=√(6.65^2+4.35^2+2* 6.65* 4.35* cos0 )=7.945N](https://img.qammunity.org/2021/formulas/physics/college/d3usfhuzavh5dnjvnr2w33qbl488xbu35i.png)
So resultant force will be equal to 7.946 N