Answer:
4.
![x^{((7)/(4))} = \sqrt[7]{x^4}](https://img.qammunity.org/2021/formulas/mathematics/high-school/j2itkj9mftr3b1jjrn4h299l13skmddkqd.png)
Explanation:
Here, consider the each expression and simplify it:
1.
![x^{(1)/(8) }* x^{(1)/(8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jdvvqjzhi9vpjqw9behd2osfoued44da68.png)
Now, if the BASE IS SAME when multiplied, THE POWERS ARE ADDED.
![x^{(1)/(8) }* x^{(1)/(8)} = x^{((1)/(8) + (1)/(8))}\\= x^{((1)/(4))} =\sqrt[4]{x} \\\implies x^{(1)/(8) }* x^{(1)/(8)} = \sqrt[4]{x}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6967dkehv4ili7e7ux1ypbhaw9uyod4dpc.png)
Hence, given statement if TRUE.
2.
![\frac{x^{(2)/(5) }}{x^{(1)/(5) }}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ssq7ioobvmzu8fxa13tb61rhaqrbthctlv.png)
Now, if the BASE IS SAME when divided, THE POWERS ARE SUBTRACTED.
![\frac{x^{(2)/(5) }}{x^{(1)/(5) }} = x^{((2)/(5) ) -((1)/(5) )} = x^ {((1)/(5))} = \sqrt[5]{x} \\\implies \frac{x^{(2)/(5) }}{x^{(1)/(5) }} = \sqrt[5]{x}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ky7rpvz3jt085qawhqt8q43vi1gnh4q0m9.png)
Hence, given statement if TRUE.
3.
![x^{((7)/(9))](https://img.qammunity.org/2021/formulas/mathematics/high-school/vmgn8zaqu7dgnmefv2keqjmeuh6k1z3zc0.png)
Now,a s we know :
![x^{((1)/(a)) } = \sqrt[a]{x}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ixt63fvg9j0olxwq64roonl6whkbauikje.png)
So, solving given expression:
![x^{((7)/(9))} = \sqrt[9]{x^7}](https://img.qammunity.org/2021/formulas/mathematics/high-school/27mu2ptwuqggmggcny22wav14v51gk045d.png)
Hence, given statement if TRUE.
4.
![x^{((7)/(4))](https://img.qammunity.org/2021/formulas/mathematics/high-school/h3n3tehsos2hgntuwzq3u8nimfj8ih5t2d.png)
Now,a s we know :
![x^{((1)/(a)) } = \sqrt[a]{x}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ixt63fvg9j0olxwq64roonl6whkbauikje.png)
So, solving given expression:
![x^{((7)/(4))} = \sqrt[4]{x^7} \\eq \sqrt[7]{x^4}](https://img.qammunity.org/2021/formulas/mathematics/high-school/poo1hfue7cd97veuk7ioqndj84esttg9wm.png)
Hence, given statement if FALSE.