208k views
1 vote
3 /sqrt3-11 rationalize the denominator

User Pland
by
5.1k points

1 Answer

5 votes

Answer:

The solved expression is
(3)/(√(3)-11)=-(3√(3)+33)/(118)

Explanation:

Given expression is
(3)/(√(3)-11)

To rationalize the given expression as below :


(3)/(√(3)-11)

Multiply and divide the conjugate of denominator
√(3)-11 is
√(3)+11 we get


=((3)/(√(3)-11)* √(3)+11)/(√(3)+11)


=(3(√(3)+11))/((√(3)-11)(√(3)+11))


=(3(√(3)+3(11))/((√(3))^2-11^2) ( using the formula
(a-b)(a+b)=a^2-b^2 )


=(3√(3)+33)/(3-121)


=(3√(3)+33)/(-118)


=-(3√(3)+33)/(118)

Therefore the solved expression is
-(3√(3)+33)/(118)

Therefore the given expression is
(3)/(√(3)-11)=-(3√(3)+33)/(118).

User Mykol
by
5.3k points