Answer:
a)
![t = \sqrt{(2 *10m)/(9.8 m/s^2)}=1.43s](https://img.qammunity.org/2021/formulas/mathematics/college/6zhl8pskergm2y88wog7ejn16tt6ed25eb.png)
b)
![4.9t^2 -2t -10 =0](https://img.qammunity.org/2021/formulas/mathematics/college/c75ujjav6fcdyp2sdiqmchc302toqfl3s3.png)
And we can use the quadratic formula to solve it:
![t = (2 \pm √((-2)^2 -4(4.9)(-10)))/(2*4.9)](https://img.qammunity.org/2021/formulas/mathematics/college/72rdy7zbnahbo0qajo0oar32zklp6u8zbk.png)
![t =(2 \pm √(200))/(9.8)](https://img.qammunity.org/2021/formulas/mathematics/college/3fj0z6llkrkw1v2k4zbc4fj95eq8peierm.png)
![t_1 =1.65 s, t_2 =-1.24 s](https://img.qammunity.org/2021/formulas/mathematics/college/32e5dd1syhhfiw4dnukrs4x5jm8qx7iiiz.png)
And since the time can't be negative the correct option would be
![t=1.65 s](https://img.qammunity.org/2021/formulas/mathematics/college/rqwwk0cs8zgwyddmtzqthg2lc6uak5lyvr.png)
Explanation:
For this case we can use the following kinematics formulas:
![y_f = y_o + V_o t + (1)/(2) a t^2](https://img.qammunity.org/2021/formulas/mathematics/college/oo22pgwdijx6ijjby8e56ijmrtp52bqfwd.png)
For this case we assume that the only acceleration is the gravity a = g =9.8 m/s^2. And for this case we can assume that the reference point is
and the final height would be
since is below the initial point.
Teh acceleration would be a=-g, since the gravity is acting dowward, we assume that the initial velocity is 0, so then we have everything to replace and we got:
![-10 m = 0m + (0m/s)t -(1)/(2) (9.8 m/s^2) t^2](https://img.qammunity.org/2021/formulas/mathematics/college/lmksvxmkacny4a6cf7p7txrqnka14p1uni.png)
And solving for t we got:
![t = \sqrt{(2 *10m)/(9.8 m/s^2)}=1.43s](https://img.qammunity.org/2021/formulas/mathematics/college/6zhl8pskergm2y88wog7ejn16tt6ed25eb.png)
For the second part assuming that We have an initial vertical speed of
we have the following equation:
![-10 m = 0m + (2m/s)t -(1)/(2) (9.8 m/s^2) t^2](https://img.qammunity.org/2021/formulas/mathematics/college/pc4pjktdu1vhoict548eucwlu5yc98ljdf.png)
And we have this quadratic equation:
![-10 = 2t -4.9t^2](https://img.qammunity.org/2021/formulas/mathematics/college/c9ybboh4wjg5ht9ihbeyvinraialg8hu1n.png)
![4.9t^2 -2t -10 =0](https://img.qammunity.org/2021/formulas/mathematics/college/c75ujjav6fcdyp2sdiqmchc302toqfl3s3.png)
And we can use the quadratic formula to solve it:
![t = (2 \pm √((-2)^2 -4(4.9)(-10)))/(2*4.9)](https://img.qammunity.org/2021/formulas/mathematics/college/72rdy7zbnahbo0qajo0oar32zklp6u8zbk.png)
![t =(2 \pm √(200))/(9.8)](https://img.qammunity.org/2021/formulas/mathematics/college/3fj0z6llkrkw1v2k4zbc4fj95eq8peierm.png)
![t_1 =1.65 s, t_2 =-1.24 s](https://img.qammunity.org/2021/formulas/mathematics/college/32e5dd1syhhfiw4dnukrs4x5jm8qx7iiiz.png)
And since the time can't be negative the correct option would be
![t=1.65 s](https://img.qammunity.org/2021/formulas/mathematics/college/rqwwk0cs8zgwyddmtzqthg2lc6uak5lyvr.png)