Answer:
The limit is infinite
Explanation:
L'Hopital's Rule
It's used when we are computing a given rational limit and the result is an indeterminate expression like 0/0. If the limit has is rational function with f(x) in the numerator and g(x) in the denominator, then
![\displaystyle \lim _(x\rightarrow a)(f(x))/(g(x))=\lim _(x\rightarrow a)\ (f'(x))/(g'(x))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wzu9olko3wiswxclw1ffx1cry6u2y985nh.png)
We need to compute
![\displaystyle L= \lim _(x\rightarrow 5^-)\ (2\ arccos(x-4))/(x-5)=(2\ arccos\ 1)/(5-5)=(0)/(0)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xyvyuu1af5u95emk7hco7sddzpzyzaoveb.png)
Since the result is an indetermination, we use L'Hopital's rule, by computing f'(x) and g'(x) as follows
![\displaystyle f(x)=2\ arccos(x-4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qzxf0go1s6j5lfhbr03dno7kx9d7j1nbks.png)
![\displaystyle g(x)=x-5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qngfjtznsld7g2bwed5j6wmxtw9mupn7nd.png)
Recall the derivative of the arccos function is
![\displaystyle [arccos\ u]'=-(-u')/(√(1-u^2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2lm90w4rv9wo6k531wtaf1so5fx6lnjzjv.png)
Thus:
![\displaystyle f'(x)=[2arccos(x-4)]'=(-2(x-4)')/(√(1-(x-4)^2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/p06anle5dymtlhe4fpgqrq14n52fvh5lya.png)
![\displaystyle f'(x)=(-2)/(√(1-(x-4)^2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rcp6o79k0zs4azefeh0gz0hvseke2lozww.png)
![\displaystyle g'(x)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ikrrmwn352jsj1myralinjs83wc3idzvc4.png)
Replacing into the original limit, we have
![\displaystyle L=\lim _(x\rightarrow 5^-)\ (-2)/(√(1-(x-4)^2))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/77daktlyx0tf4wsqtc8365dp2qcr3hi1to.png)
![\displaystyle L=(-2)/(√(1-1^2))=-\infty](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6symm45ljvgfwdx9w839x4wsctu40pvifd.png)
![\boxed{\text{The limit is infinite}}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sm9coe8y1povnnaky9ryrsxknbym3rbscm.png)